DISSOLVED-SELENIUM DATA FOR WELLS IN THE WESTERN SAN JOAQUIN VALLEY, CALIFORNIA, FEBRUARY TO JULY 1985 By J.M. Neil U.S. GEOLOGICAL SURVEY Open-File Report 86-73 REGIONAL AQUIFER SYSTEMS ANALYSIS Prepared in cooperation with the U.S BUREAU OF RECLAMATION ## UNITED STATES DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information: write to: District Chief U.S. Geological Survey Federal Building, Room W-2234 2800 Cottage Way Sacramento, CA 95825 Copies of this report may be purchased from: Open-File Services Section Western Distribution Branch U.S. Geological Survey Box 25425, Federal Center Denver, CO 80225 Telephone: (303) 236-7476 # CONTENTS | | Page | |--|---------------------------------| | Abstract | 1
3
3
6
6
7
7 | | | | | ILLUSTRATION | | | | Page | | Figure 1. Map showing areal distribution of selenium concentrations from wells completed in the confined and unconfined aquifers | 4 | | TABLES | | | | Page | | Table 1. Well and selenium data for selected wells completed in the unconfined aquifer | 8 | | Well and selenium data for selected wells completed in the
confined aquifer | 9 | | 3. Well and selenium data for selected public-supply wells | 10 | | 4. Summary of selenium data for all wells | 10 | ## CONVERSION FACTORS For this report, the inch-pound system of units was used. For those readers who may prefer metric units rather than inch-pound units, the conversion factors for the terms used in this report are listed below: | Multiply | Ву | To obtain | | | |------------|--------|---------------|--|--| | acres | 4,047 | square meters | | | | ft (feet) | 0.3048 | meters | | | | mi (miles) | 1.609 | kilometers | | | Selenium concentrations are given in micrograms per liter ($\mu g/L$). One thousand micrograms per liter is equivalent to 1 milligram per liter. Micrograms per liter is equivalent of "parts per billion." # DISSOLVED-SELENIUM DATA FOR WELLS IN THE ## WESTERN SAN JOAQUIN VALLEY, CALIFORNIA, ## FEBRUARY TO JULY 1985 By J.M. Neil ## **ABSTRACT** Water samples were collected for selenium analysis from 63 wells in western San Joaquin Valley, California, during February to July 1985. Results of the data collection indicate that dissolved-selenium concentrations ranged from less than 1 to 120 micrograms per liter; more than 50 percent of the wells sampled had concentrations of less than 1 microgram per liter. Four additional samples collected from public-supply wells in the western valley had concentrations ranging from less than 1 to 2 micrograms per liter. All samples from five public-supply wells east of the study area had concentrations less than 1 microgram per liter. The U.S. Environmental Protection Agency's drinkingwater standard of 10 micrograms per liter for selenium was slightly exceeded in 2 of 39 domestic wells (11 and 13 micrograms per liter) and substantially exceeded in 2 of 11 irrigation and agricultural wells (55 and 120 micrograms per liter). #### INTRODUCTION The presence of high selenium concentrations in shallow ground water in parts of the western San Joaquin Valley (Deverel and others, 1984) has caused concern that selenium or other substances may be present at potentially harmful concentrations in the confined and unconfined aquifers of the western valley. To address this concern, the U.S. Geological Survey, in cooperation with the U.S. Bureau of Reclamation, began a comprehensive water-quality study of the two aquifers in January Objectives of the comprehensive study are to (1) assess the areal distribution of trace elements and pesticides in the confined and unconfined regional aquifers; (2) evaluate geochemical controls on the chemistry of ground water in the aquifers and the hydrologic and geologic factors that affect the quality of the water in different areas; (3) evaluate ground-water quality of western San Joaquin Valley; and (4) assess the degree of change that have occurred in the chemical characteristics of ground water. This report was prepared to provide a timely release of selenium-concentration data that were collected February to June 1985 as part of the comprehensive assessment of ground water in western San Joaquin Valley. Detailed evaluation of these data and data collected on numerous other properties and constituents is in progress and interpretive reports will be released as they are completed. ### DESCRIPTION OF DATA Water samples were collected for selenium analysis from 63 wells completed in the unconfined and confined aquifers during February to July 1985. aguifers underlie the entire western San Joaquin Valley and are separated by a confining layer (E Clay) that ranges in thickness from 40 to 140 feet (Hotchkiss and Balding, 1971). Wells completed in the unconfined aquifer range from about 50 to 500 feet in depth; wells completed in the confined aguifer range from about 200 to 1,400 feet in depth. In addition, samples were collected during September 1985 from nine public-supply wells, five of which were outside the study area to the east. In the 79 townships of the study area, 28 suitable wells in 27 townships were sampled in the unconfined aquifer and 35 suitable wells in 35 townships were sampled in the confined aquifer. Most wells completed in the confined and unconfined aquifers were in the northern part of the study area (fig. 1). A well was considered suitable if construction data identified (1) which of the two aquifers the well was withdrawing water from, and (2) whether an operational pump was installed. Well and selenium data are given for each well in table 1 for the unconfined aquifer, table 2 for the confined aquifer, and table 3 for the nine public-supply wells. Selenium data for all wells are summarized in table 4. The areal distribution of concentrations in wells listed in tables 1 and 2 are shown in figure 1. FIGURE 1.— Areal distribution of selenium concentrations from wells completed in the confined and unconfined aquifers. ### **METHODS** For all the wells, samples were collected using the existing pump and piping system. Samples were collected after a period of pumping in which the general chemical character of the water, as measured in the field by specific conductance and pH, had stabilized. Standard field methods (U.S. Geological Survey, 1980) were then used to collect samples for laboratory analyses. The method used for analyzing dissolved selenium is described in Fishman and Bradford (1982). ### WELL-NUMBERING SYSTEM Wells are identified according to their location in the rectangular system for the subdivision of public lands. Their identification consists of township number, north or south; the range number, east or west; and the section numbers. Each section is further divided into sixteen 40-acre tracts lettered consecutively (except I and 0), beginning with A in the northeast corner of the section and progressing in a sinusoidal manner to R in the southeast corner. Within the 40-acre tract, wells are sequentially numbered in the order they are inventoried. The final letter in a well identification number refers to the base line and meridian. wells in the study area are referenced to the Mount Diablo base line and meridian (M). The illustration below shows how the well number 10S/13E-29P1M is derived. ## RESULTS Results of the data collection indithat dissolved-selenium concentrations ranged from less than 1 to 120 μg/L; more than 50 percent of the wells sampled had concentrations of less than 1 μ g/L. The highest concentration of 120 µg/L was in an agricultural well in the confined aquifer, and the second highest concentration of 55 µg/L was in an irrigation well in the unconfined aquifer. The drinking-water standard of 10 µg/L (U.S. Environmental Protection Agency, 1977) for selenium was slightly exceeded in 2 of 39 domestic wells (11 and 13 µg/L) and substantially exceeded in 2 of 11 irrigation and general agricultural wells (55 and 120 μ g/L). 10-µg/L standard, however, revised to 45 µg/L (U.S. Environmental Protection Agency, 1985). from six public-supply wells in the west side of the valley (2 in table 2 and 4 in table 3) had concentrations ranging from less than 1 to 3 All samples from five publicsupply wells (table 3) east of the study area had selenium concentrations of less than 1 µg/L. ## REFERENCES CITED Deverel, S.J., Gilliom, R.J., Fujii, Izbicki, J.A., and Fields, Roger, J.C., 1984, Areal distribution of selenium and other inorganic constituents in shallow ground water of the San Luis Drain service area, Joaquin Valley, California: A preliminary study: U.S. Geological Survey Water-Resources Investigations Report 84-4319, 67 p. Fishman, M.J., and Bradford, W.L., 1982, A supplement to methods for the determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Open-File Report 82-272, 136 p. Hotchkiss, W.R., and Balding, G.O., 1971, Geology, hydrology, and water quality of the Tracy-Dos Palos area, San Joaquin Valley, California: Geological Survey Open-File Report, 107 p. U.S. Environmental Protection Agency, National interim drinking-water regulations: Environmental Protection Agency Office of Water Supply, EPA 570/9-76-003, 159 p. 1985, National primary drinkingwater regulations, synthetic organic chemicals, inorganic chemicals and microorganisms: Federal Register, v. 50, no. 219, p. 46973-46975. U.S. Geological Survey, 1980, Ground water, chapter 2 of National Handbook of Recommended Methods for Water-Data Acquisition: U.S. Geological Survey, Office of Water-Data Coordination, p. 2-1 to 2-149. TABLE 1. -- Well and selenium data for selected wells completed in the unconfined aquifer [Station No.: Unique number for each site based on the latitude and longitude of the site. First six digits are latitude, next seven digits are longitude, and final two digits are a sequence number to uniquely identify each site. State well No.: See Well-Numbering System in text. Altitude of land surface: Datum is sea level. Casing: Top and bottom of the open interval was measured from the top of the casing. Primary use of water: I, irrigation; D, dewatering; and H, domestic. <, actual value is less than the value shown] | Station No. | State well
No. | Altitude
of land
surface
(ft) | Cas Top of open interval (ft) | Bottom
of open
interval
(ft) | Primary
use of
water | Date
of
sample | Dissolved
selenium
(ug/L) | |---|---|--|---------------------------------------|--|----------------------------|---|---------------------------------| | 374528121221801
374136121213601
374058121141501
373258121115901 | 2S/5E-13P1M
3S/6E- 7E1M
3S/7E- 7Q1M
4S/7E-33B1M | 15
76
25
90 | 68
18
101
55 | 80
47
106
75 | H

 H
 H | 3-28-85
3-11-85
3-12-85
3-12-85 | 4
2
<1
10 | | 373616121025001
373137121092701
372927121044401
372608121054401
372619120593001 | 4S/8E-12E1M
5S/7E- 1M2M
5S/8E-22C1M
6S/8E- 4P1M
6S/9E- 4M1M | 60
91
50
105
60 | 91
90
62
88
71 | 106
120
72
108
81 | Н
Н
Н
Н | 5- 1-85
5- 1-85
4-30-85
5-16-85
5-15-85 | <1
2
13
4
<1 | | 371912121025001
371953121013701
372004120501301
371613121015201
371433120595601 | 7S/8E-13N1M
7S/9E-18D1M
7S/10E-11Q1M
8S/8E- 1H1M
8S/9E-17B1M | 108
95
88
110
105 | 36
110
47
63
56 | 46
120
65
78
76 | H
H
H
H | 3-26-85
3-26-85
5-14-85
3-27-85
3-27-85 | <1
2
<1
2
1 | | 370644120591601
370600120503501
370557120453901
370259120511201
370248120380701 | 9S/9E-33C1M
9S/10E-35Q1M
9S/11E-34N2M
10S/10E-22H4M
10S/12E-22J1M | 125
95
95
123
105 | 40
120
90
open bott
120 | 60
140
110
om at 75 ft
160 | H
H
H
H | 3-28-85
4- 9-85
4-10-85
4-30-85
4-29-85 | <1
6
<1
1
<1 | | 370145120341701
365000120253801
364747120223402
363801120195901
362630120073901 | 10S/13E-29P1M
13S/14E- 3B1M
13S/15E-18Q2M
15S/15E- 9R1M
17S/17E-16Q2M | 115
150
160
168
218 | 115
open bott
180
100
270 | 130
om at 240 ft
220
200
480 | H
H
H
! | 4-30-85
5-15-85
5-13-85
3-26-85
5-16-85 | <1
<1
<1
3
<1 | | 362907119584901
362019120064201
362317119522201 | 17S/18E- 2A2M
18S/17E-27F2M
18S/19E- 2R1M | 203
283
220 | 216
40
200 | 336
60
240 | Н
1
Н | 5-16-85
3-27-85
5-15-85
5-15-85 | <1
55
54*
<1 | | 360852120014601 | 20S/18E-33E3M | 305 | 380 | 500 | H | 5-15-85 | ì | ^{*}Water-quality control sample. TABLE 2.--Well and selenium data for wells completed in the confined aquifer [Station No.: Unique number for each site based on the latitude and longitude of the site. First six digits are latitude, next seven digits are longitude, and final two digits are a sequence number to uniquely identify each site. State well No.: See Well-Numbering System in text. Altitude of land surface: Datum is sea level. Casing: Top and bottom of the open interval was measured from the top of the casing. Primary use of water: A, general agriculture; C, commercial; H, domestic; I, irrigation; N, industrial; P, public supply; U, unused. <, actual value is less than the value shown] | | | Casing | | | | *************************************** | | | |---|---|--|------------------------------------|---|----------------------------|--|-------------------------------------|--| | Station No. | State well
No. | Altitude
of land
surface
(ft) | Top of open interval (ft) | Bottom
of open
interval
(ft) | Primary
use of
water | Date
of
sample | Dissolved
selenium
(ug/L) | | | 374509121260001
374445121200001
373957121260101
373820121163501
373557121191901 | 2S/5E-21D1M
2S/6E-20L2M
3S/5E-20A2M
3S/6E-26Q1M
4S/6E- 9M1M | 28
15
230
78
210 | 337*
592
340
200
265 | 1,130
652
400
207
305 | Р
U
Н
С
Н | 3-27-85
5-21-85
3-28-85
3-12-85
3-13-85 | 3
<1
2
1
2 | | | 373224121085201
373548121075701
372843121110401
372722121063301
372610121083101 | 4S/7E-36Q3M
4S/8E- 7P1M
5S/7E-27B1M
5S/8E-32K3M
6S/7E- 1R1M | 64
40
180
97
195 | 230
280
189
255
205* | 250
300
229
275
685 | H
H
H
H | 3-13-85
7-2-85
5-16-85
4-30-85
5-16-85 | 1
<1
5
11
6 | | | 372608121041201
372603120584701
371723121042901
371631120574401
371833120534701 | 6S/8E- 3R2M
6S/9E- 9A2M
7S/8E-27Q1M
7S/9E-34Q1M
7S/10E-20L2M | 77
58
155
72
70 | 243
340
147
450
270 | 273
400
247
658
360 | Н
С
Н
Н
S | 5-16-85
5-21-85
5-13-85
3-28-85
5-13-85 | 8
<1
<1
<1 | | | 371125120575701
370843120572301
370650120534101
370936120484701
371109120411401 | 8S/9E-34Q1M
9S/9E-14N2M
9S/10E-32B1M
9S/11E- 7N4M
9S/12E- 5D1M | 87
99
94
85
100 | 410
400
440
320
240* | 470
620
500
420
738 | H
N
S
H
I | 3-27-85
3-28-85
4-9-85
4-10-85
4-10-85 | 4
<1
1
<1
<1 | | | 370355120564901
370322120501901
370515120332401
365327120441301
364523120185901 | 10S/9E-14H2M
10S/10E-23A2M
10S/13E- 1J1M
12S/11E-14C1M
13S/15E-34J7M | 140
115
135
182
162 | 260
93
290
406
140 | 300
250
450
706
220 | H
N
S
H
N | 4-10-85
4-11-85
5-14-85
5-14-85
3-26-85 | 3
<1
<1
1
<1 | | | 364313120302801
364258120301301
364313120265701
363907120144401
363153120272201 | 14S/13E-12P1M
14S/13E-13G1M
14S/14E- 9Q1M
15S/16E- 5J1M
16S/14E-16N1M | 272
273
230
162
495 | 700
700
612*
663*
904 | 1,400
1,350
1,250
930
1,900 | I
I
H
A | 2-28-85
2-28-85
2-28-85
3-25-85
3-26-85
11-5-85 | <1
<1
<1
1
120
100** | | | 362533120060603
362403119583501
362009120064201
361924119564801
360659120053101 | 17S/17E-26E3M
17S/18E-35R2M
18S/17E-27F1M
18S/19E-31G1M
21S/17E-12E2M | 223
212
285
232
368 | 1,040
310
603*
766
568 | 1,100
350
1,700
1,010
1,290 | C
H
I
P | 5-16-85
5-16-85
3-27-85
7-2-85
7-1-85 | <1
<1
1
<1
5 | | ^{*}Uppermost and lowermost depth of multiperforated well casing. **Water-quality control sample. TABLE 3.--Well and selenium data for selected public-supply wells [Station No.: Unique number for each site based on the latitude and longitude of the site. First six digits are latitude, next seven digits are longitude, and final two digits are a sequence number to uniquely identify each site. State well No.: See Well-Numbering System in text. Casing: Top and bottom of the open interval was measured from the top of the casing. <, actual value is less than the value shown] | | | | | Cas | ing | | | |--|--|--|---|---------------------------|---------------------------------------|--|---------------------------------| | Station No. | State well
No. | City | Aquifer | Top of open interval (ft) | Bottom
of open
interval
(ft) | Date
of
sample | Dissolved
selenium
(ug/L) | | | | St | udy Area | | | | | | 371512121002101
371512120594701
370308120510901
370308120510901 | 8S/9E- 8F1M
8S/9E- 8H3M
10S/10E-23E1M
10S/10E-23E2M | Gustine
Gustine
Los Banos
Los Banos | Unconfined
Unconfined
Unconfined
Unknown | 120
130
164 | 200(?)
250(?)
310 | 9-12-85
9-12-85
9-11-85
9-11-85 | 5 2
5 <1 | | 0.0000,200,000. | ,00,102 2022 | | of Study Are | a | | , oj | | | 364841119480501 | 13S/20E- 9M1M | Fresno | Unknown | | oottom at
'2 ft | 9-11-85 | 5 <1 | | 364746119411801 | 13S/21E-16Q1M | Fresno | Unknown | 144 | 256 | 9-11-85 | | | 364339119414701 | 14S/21E- 9N1M | Fresno | Unknown | | | 9-11-85 | | | 363224119494801
361923119392501 | 16S/20E-18G1M
18S/21E-35H2M | Caruthers
Hanford | Unknown
Unconfined | 210 | 450 | 9-10-85
9-10-85 | | TABLE 4.--Summary of dissolved selenium concentrations in wells | | Number
of Wells | Dissolved selenium (ug/L) | | | | |---|--------------------|---------------------------|--------|---------|--| | Type of well | | Minimum | Median | Maximum | | | Wells completed in the unconfined aquifer (table 1) | 28 | <1 | 1 | 55 | | | Wells completed in the confined aquifer (table 2) | 35 | <1 | <1 | 120 | | | Public-supply wells (table 3) . | 9 | <1 | <1 | 2 | |